

晶采光電科技股份有限公司 AMPIRE CO., LTD

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-240320MMTZQW-01H
APPROVED BY	
DATE	

☐ Preliminary Specification

☑ Formal Specification

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116號 4樓(東方科學園區 A棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

Approved by	Checked by	Organized by		
Patrick	Mark	Tank		

1

Date: 2020/02/17 AMPIRE CO., LTD.

^{*}This specification is subject to change without notice.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2020/02/17	-	New Release	Tank

1 Features

LCD 2.8 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) for mobile-phone or handy electrical equipments.

- (1) Construction: 2.8" a-Si color TFT-LCD, White LED Backlight and FPCB.
- (2) Main LCD: 2.1 Amorphous-TFT 2.8 inch display, transmissive, Normally white type (TN).
 - 2.2 240(RGB) X 320 dots Matrix, 1/320 Duty.
 - 2.4 Main LCD Driver IC: ST7789S
 - 2.5 65,536: Red-5bit, Green-6bit, Blue-5bit (16-bit interface)
- (3) Low cross talk by frame rate modulation
- (4) Direct data display with display RAM
- (5) Partial display function: You can save power by limiting the display space.
- (6) Interface: 3-line serial interface
- (7) Abundant command functions:

Area scroll function

Display direction switching function

Power saving function

(8) Viewing Direction: Wide view angle without Gray-inversion by EVA technology.

2 Mechanical specifications

Dimensions and weight

Date: 2020/02/17

	Item	Specifications	Unit
External shape dimensions		*1 49.0 (W) x 108.2 (H) x 3.0 (T)	mm
Main	Pixel size	0.18 (W) x 0.18 (H)	mm
LCD	Active area	43.2 (W) x 57.6 (H)	mm
202	Number of Pixels	240(H)x320(V) pixels	mm
Weight		TBD	g

^{*1.} This specification is about External shape on shipment from AMPIRE.

3 Absolute max. ratings and environment

3-1 Absolute max. ratings

Ta=25°C GND=0V

Item	Symbol Min. Max.		Max.	Unit	Remarks
Power voltage	VDD – GND	-0.3	+3.3	V	
Power voltage	LED A – LED K	-0.5	13.6V	V	Serial
Input voltage	VIN	-0.5	VDD	V	

3-2 Environment

Item	Specifications	Remarks
Storage temperature	Max. +80 °C Min30 °C	Note 1: Non-condensing
Operating temperature	Max. +70 °C Min20 °C	Note 1: Non-condensing

Note 1: Ta≤+40 °C · · · Max.85%RH

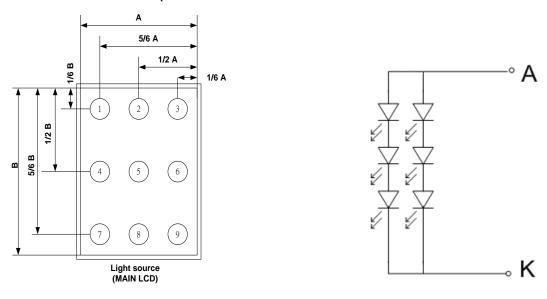
Ta>+40 $^{\circ}$ C · · · The max. humidity should not exceed the humidity with 40 $^{\circ}$ C 85%RH.

4 Electrical specifications

4-1 Electrical characteristics of LCM

 $(V_{DD}=3.0V, Ta=25 \, ^{\circ}C)$

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IC power voltage	V_{DD}		2.4	2.75	3.3	V
High-level input voltage	V _{IHC}		0.8		V_{DD}	V
Low-level input voltage	V _{ILC}		-0.3		0.2V _{DD}	V
Consumption current of VDD	I _{DD}	LED OFF	-	T.B.D	-	mA
LED driver operating voltage	VLED		2.8	3.3	5.5	V
Consumption current of LED driver	I _{LED}	V _{LED} =3.3V	-	120	-	mA
PWM frequency	Fadj	V _{LED} =3.3V	100	-	200K	Hz


4-2 LED back light specification

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Forward voltage	V _f		-	9.6	-	V	
Forward current	I _f			*30		mA	
Power Consumption	P _{BL}	$I_f = 30 \text{mA}$	-	*288	-	mW	
LED life time			20k	-	-	hr	
Uniformity (with L/G)	-	I _f =30mA	70%*1	-	-		
Luminous color	White						

The symbol means the following value were for reference.

Bare LED measure position:

Date: 2020/02/17

*1 Uniformity (LT): $\frac{Min(P1 \sim P9)}{Max(P1 \sim P9)} \times 100 \ge 80\%$

5 Main LCD

5-1 Optical characteristics

 $(1/320 \text{ Duty in case except as specified elsewhere Ta = }25^{\circ}\text{C})$

Item	ı	Symbol	Conditions	Min	Тур	Max	Unit	Not e
Contrast Rat	tio	CR	Viewing	-	250	-	-	
Response Ti	ime	T _R +T _F	normal angle $\Theta x = \Theta y = 0$	ı	16	-	ms	(4)
	Тор	Өт		75	85	-		
Viewing	Botto m	⊖в	CR≧10	75	85	-	deg	(2)
Angle	Left	θL		75	85	-	9	
	Right	θR		75	85	-		
	Red	XR		0.576	0.626	0.676		
	Red	YR		0.286	0.336	0.386		
	Green	Xg	Viewing	0.226	0.276	0.326	1	
Module	Green	Yg	normal angle	0.500	0.550	0.600		_
Chromaticity	Blue	Хв	$\Theta x = \Theta y = 0$	0.094	0.144	0.194	-	_
	Diue	YB		0.080	0.130	0.180		
	White	Xw		0.257	0.307	0.357		
	AAIIIG	Yw		0.279	0.329	0.379		
Brightness		-	LCD center	220	280	-	Cd/m ²	(1)

Note (1) Measurement Setup:

The LCD module should be stabilized at given temperature $(25\,^{\circ}\text{C})$ for 15 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

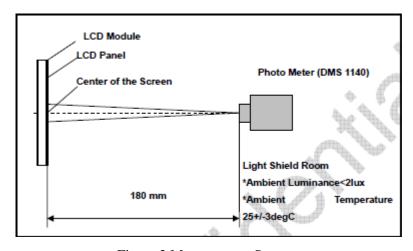


Figure 2 Measurement Setup

Note (2) Definition of Viewing Angle

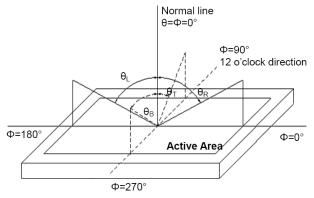


Figure 3 Definition of Viewing Angle

Note (3) Definition Of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63, L0: Luminance of gray level 0

Note (4) Definition Of Response Time

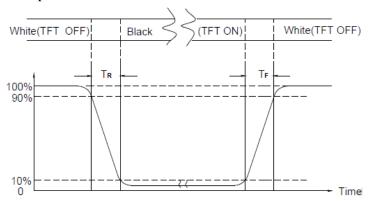
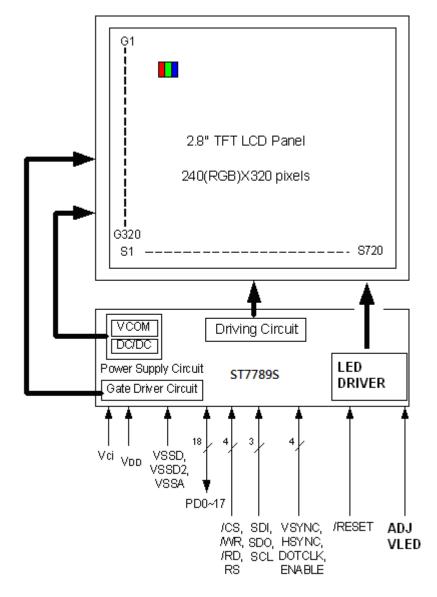


Figure 4 Definition of Response Time

8

6 Block Diagram


Date: 2020/02/17

Block diagram (Main LCD)

Display format: A-Si TFT transmissive, Normally white type (TN).

Display composition: 240 x RGB x 320 dots

LCD Driver: ST7789S

7 Interface specifications

Pin No.	Terminal	Functions	Remark
1-2	NC	No Connection	
3	ADJ	For LED Driver IC Dimming; Keep Hi for LED ON.	
4	VLED	Power supply for LED Driver IC circuit.	
5-8	NC	No Connection	
9	GND	GND-terminal	
10	DB0	No Connection	Fix to GND in this model
11	DB1		
12	DB2		
13	DB3		
14	DB4	i90 16bita I CD data bug	Fix to GND in
15	DB5	i80-16bits LSB data bus	this model
16	DB6		
17	DB7		
18	DB8		
19	DB9	No Connection	Fix to GND in this model
20	DB10		
21	DB11		
22	DB12		
23	DB13	1	Fix to GND in
24	DB14	i80-16bits MSB data bus	this model
25	DB15		
26	DB16		
27	DB17		
28	SDI	Serial bus interface data input pin.	
29	WR	Write enable signal/Serial bus interface clock input pin.	Fix to GND in this model
30	/RD	Read enable signal.	Fix to GND in this model
31	/RESET	Reset pin. Must be reset the chop after power being supplied.	
32	DE	A data ENABLE signal in RGB I/F mode.	Fix to GND in this model
33	GND	GND-terminal.	
34	DCLK	Dot clock signal in RGB I/F mode.	Fix to GND in this model
35	GND	GND-terminal.	
36	HSYNC	Line synchronizing signal in RGB I/F mode.	Fix to GND in
37	VSYNC	Frame synchronizing signal in RGB I/F mode.	this model
38	/CS	Chip select signal.	
39	SCL	serial interface clock	
40	VCC	Power supply for Step-up circuit.	

7-1 Serial Interface

3-line serial interface I

Pin Name	Description
CSX	Chip selection signal
DCX	Clock signal
SDA	Serial input/output data

7-2 Command write mode protocol

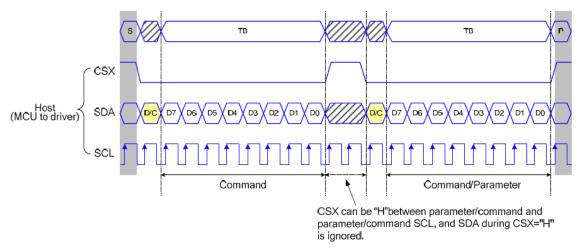
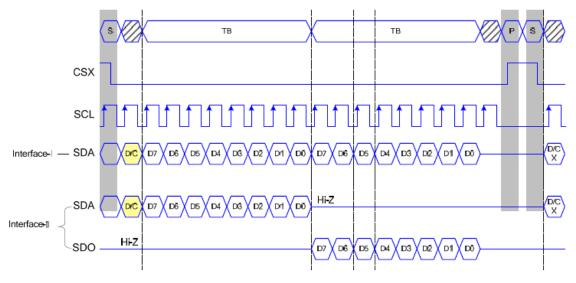


Figure 13 3-line serial interface write protocol (write to register with control bit in transmission)

7-3 Read function


Date: 2020/02/17

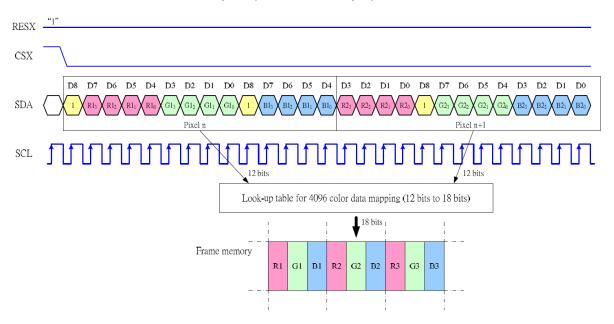
The read mode of the interface means that the micro controller reads register value from the driver. To chieve read function, the micro controller first has to send a command (read ID or register command) and then the following byte is transmitted in the opposite direction. After that CSX is required to go to high before a new command is send (see the below figure). The driver samples the SDA (input data) at rising edge of SCL, but shifts SDA (output data) at the falling edge of SCL. Thus the micro controller is supported to read at the rising edge of SCL.

After the read status command has been sent, the SDA line must be set to tri-state no later than at the falling edge of SCL of the last bit

8.4.4 3-line serial interface I / II protocol

3-line serial protocol (for RDID1/RDID2/RDID3/0Ah/0Bh/0Ch/0Dh/0Eh/0Fh command: 8-bit read):

7-4 3-Line Serial Interface Data Mapping

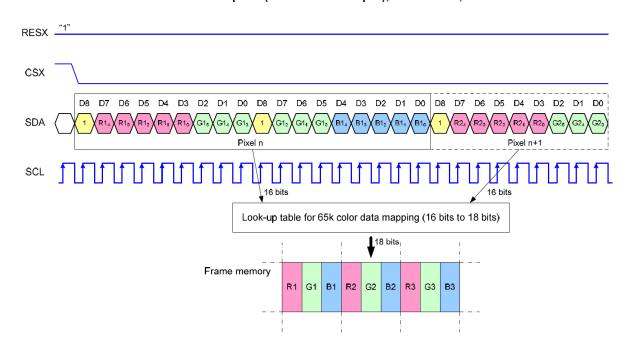

Different display data formats are available for three colors depth supported by the LCM listed below.

4k colors, RGB 4-4-4-bit input

65k colors, RGB 5-6-5-bit input

262k colors, RGB 6-6-6-bit input

8.8.37 Write data for 12-bit/pixel (RGB-4-4-4 bit input), 4K-Colors, 3Ah="03h"

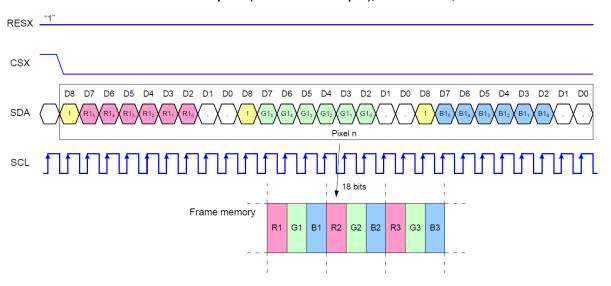

Note 1: Pixel data with the 12-bit color depth information

Note 2: The most significant bits are: Rx3, Gx3 and Bx3

Note 3: The least significant bits are: Rx0, Gx0 and Bx0

Date: 2020/02/17

8.8.38 Write data for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3Ah="05h"



Note 1: Pixel data with the 16-bit color depth information

Note 2: The most significant bits are: Rx4, Gx5 and Bx4

Note 3: The least significant bits are: Rx0, Gx0 and Bx0

8.8.39 Write data for 18-bit/pixel (RGB-6-6-bit input), 262K-Colors, 3Ah="06h"

Note 1: Pixel data with the 18-bit color depth information

Note 2: The most significant bits are: Rx5, Gx5 and Bx5

Note 3: The least significant bits are: Rx0, Gx0 and Bx0

7-12 Instruction List

LCD Driver/Controller IC:ST7789S

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
NOP	0	↑	1	-	0	0	0	0	0	0	0	0	(00h)	No operation
SWRESET	0	1	1	-	0	0	0	0	0	0	0	1	(01h)	Software reset
	0	1	1	-	0	0	0	0	0	1	0	0	(04h)	Read display ID
	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
RDDID	1	1	1	,	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10		ID1 read
	1	1	1	,	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20		ID2 read
	1	1	1	-	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30		ID3 read
	0	↑	1	-	0	0	0	0	1	0	0	1	(09h)	Read display
														status
	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
RDDST	1	1	1	-	BSTON	MY	MX	MV	ML	RGB	МН	ST24		-
	1	1	1	-	ST23	IFPF2	IFPF1	IFPF0	IDMON	PTLON	SLOUT	NORON		-
	1	1	1	-	ST15	ST14	INVON	ST12	ST11	DISON	TEON	GCS2		-
	1	1	1	-	GCS1	GCS0	TEM	ST4	ST3	ST2	ST1	ST0		-
	0	→	1		0	0	0	0	1	0	1	0	(OAh)	Read display
RDDPM		_	,	,	O	O	Ů	Ü	<u>'</u>	Ů	'	Ü	(OAII)	power
RDDFWI	1	1	1	1	•	•	-	-	-	-	-	-		Dummy read
	1	1	1	-	BSTON	IDMON	PTLON	SLPOUT	NORON	DISON	0	0		
DDD	0	1	1	-	0	0	0	0	1	0	1	1	(0Bh)	Read display
RDD MADCTL	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
WADCIE	1	1		-	MY	MX	MV	ML	RGB	МН	0	0		-
	0	•	1	,	0	0	0	0	1	1	0	0	(0Ch)	Read display
RDD		↑	'	,	O	0		0	'	_ '		U	(OCII)	pixel
COLMOD	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	0	D6	D5	D4	0	D2	D1	D0		-
	0	↑	1	-	0	0	0	0	1	1	0	1	(0Dh)	Read display
RDDIM	1	1	1	-	-	-	-	-		-	-	-		Dummy read
	1	1	1	-	VSSON	0	INVON	0	0	GC2	GC1	GC0		-
RDDSM	0	1	1	-	0	0	0	0	1	1	1	0	(0Eh)	Read display
	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
	1	1	1		TEON	TEM	0	0	0	0	0	0		-
														Read display
	0	1	1	-	0	0	0	0	1	1	1	1	(0Fh)	self-diagnostic
RDDSDR														result
	1	1	↑				-	-	-	-	-	-		Dummy read
	1	1		,	D7	D6	0	0	0	0	0	0		-
SLPIN	0		1	,	0	0	0	1	0	0	0	0	(10h)	Sleep in
SLPOUT	0	1	1	-	0	0	0	1	0	0	0	1	(11h)	Sleep out
PTLON	0	1	1	-	0	0	0	1	0	0	1	0	(12h)	Partial mode on
NORON	0	1	1		0	0	0	1	0	0	1	1	(13h)	Partial off (Normal)
INVOFF	0	1	1	-	0	0	1	0	0	0	0	0	(20h)	Display inversion off
INVON	0	1	1	-	0	0	1	0	0	0	0	1	(21h)	Display inversion on
CAMCET	0	1	1	-	0	0	1	0	0	0	0	1	(26h)	Display inversion
GAMSET	1	1	1	-	0	0	0	0	GC3	GC2	GC1	GC0		on
DISPOFF	0	1	1		0	0	1	0	1	0	0	0	(28h)	Display off
DISPON	0		1	,	0	0	1	0	1	0	0	1	(29h)	Display on
	0	↑	1	-	0	0	1	0	1	0	1	0	(2Ah)	Column address
CASET	1	1	1	-	XS15	XS14	XS13	XS12	XS11	XS10	XS9	XS8		X address start:
CASET	1	1	1		XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0		0≦XS≦X
	1	1	1		XE15	XE14	XE13	XE12	XE11	XE10	XE9	XE8		X address start:
	1	1	1		XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0		S≦XE≦X
	0	1	1	-	0	0	1	0	1	0	1	1	(2Bh)	Row address set
	1	1	1	-	YS15	YS14	YS13	YS12	YS11	YS10	YS9	YS8		Y address start:
RASET	1	\uparrow	1		YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0		0≦YS≦Y
	1	↑	1		YE15	YE14	YE13	YE12	YE11	YE10	YE9	YE8		Y address start:
	1	1	1		YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0		S≦YE≦Y
	0	1	1	-	0	0	1	0	1	1	0	0	(2Ch)	Memory write
RAMWR	1	1	1	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
TO WINVIX	1	1	1	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		Write data
	1	1	1	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
RAMRD	0	1	1	-	0	0	1	0	1	1	1	0	(2Eh)	Memory read

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
	1	1	↑	-	TEON	TEM	0	0	0	0	0	0		-
														Read display
	0	1	1	-	0	0	0	0	1	1	1	1	(0Fh)	self-diagnostic
RDDSDR														result
	1	1	1	-	•	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	D7	D6	0	0	0	0	0	0		-
SLPIN	0	1	1	-	0	0	0	1	0	0	0	0	(10h)	Sleep in
SLPOUT	0	1	1	-	0	0	0	1	0	0	0	1	(11h)	Sleep out
PTLON	0	1	1	-	0	0	0	1	0	0	1	0	(12h)	Partial mode on
NORON	0	1	1	-	0	0	0	1	0	0	1	1	(13h)	Partial off (Normal)
INVOFF	0	1	1	,	0	0	1	0	0	0	0	0	(20h)	Display inversion off
INVON	0	1	1	-	0	0	1	0	0	0	0	1	(21h)	Display inversion on
GAMSET	0	1	1		0	0	1	0	0	0	0	1	(26h)	Display inversion
GAWISET	1	1	1	-	0	0	0	0	GC3	GC2	GC1	GC0		on
DISPOFF	0	1	1	-	0	0	1	0	1	0	0	0	(28h)	Display off
DISPON	0	1	1	-	0	0	1	0	1	0	0	1	(29h)	Display on
	0	1	1	-	0	0	1	0	1	0	1	0	(2Ah)	Column address
CASET	1	1	1	-	XS15	XS14	XS13	XS12	XS11	XS10	XS9	XS8		X address start:
CASET	1	1	1		XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0		$0 \le XS \le X$
	1	1	1		XE15	XE14	XE13	XE12	XE11	XE10	XE9	XE8		X address start:
	1	1	1		XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0		S≦XE≦X
	0	1	1	-	0	0	1	0	1	0	1	1	(2Bh)	Row address set
	1	1	1	-	YS15	YS14	YS13	YS12	YS11	YS10	YS9	YS8		Y address start:
RASET	1	1	1		YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0		0≦YS≦Y
	1	1	1		YE15	YE14	YE13	YE12	YE11	YE10	YE9	YE8		Y address start:
	1	1	1		YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0		S≦YE≦Y
	0	1	1	-	0	0	1	0	1	1	0	0	(2Ch)	Memory write
RAMWR	1	1	1	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
	1	1	1	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		Write data
	1	1	1	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
RAMRD	0	1	1	-	0	0	1	0	1	1	1	0	(2Eh)	Memory read

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
	1	1	1	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		Read data
	1	1	1	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
	0	↑	1	-	0	0	1	1	0	0	0	0	(30h)	Partial sart/end address set
	1	↑	1	-	PSL15	PSL14	PSL13	PSL12	PSL11	PSL10	PSL9	PSL8		Partial start
PTLAR	1		1	-	PSL7	PSL6	PSL5	PSL4	PSL3	PSL2	PSL1	PSL0		address: (0, 1,2,P)
	1	1	1	-	PEL15	PEL14	PEL13	PEL12	PEL11	PEL10	PEL9	PEL8		Partial end
	1	↑	1	-	PEL7	PEL6	PEL5	PEL4	PEL3	PEL2	PEL1	PEL0		address (0, 1,2, 3, , P)
	0	↑	1	•	0	0	1	1	0	0	1	1	(33h)	Vertical scrolling definition
	1	1	1	-	TFA15	TFA14	TFA13	TFA12	TFA11	TFA10	TFA9	TFA8		
VICODDEL	1	1	1	-	TFA7	TFA6	TFA5	TFA4	TFA3	TFA2	TFA1	TFA0		
VSCRDEF	1	1	1	-	VSA15	VSA14	VSA13	VSA12	VSA11	VSA10	VSA9	VSA8		
	1	1	1	-	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0		
	1	1	1	-	BFA15	BFA14	BFA13	BFA12	BFA11	BFA10	BFA9	BFA8		
	1	1	1	-	BFA7	BFA6	BFA5	BFA4	BFA3	BFA2	BFA1	BFA0		
TEOFF	0	↑	1	-	0	0	1	1	0	1	0	0	(34h)	Tearing effect
TEON	0	↑	1	-	0	0	1	1	0	1	0	1	(35h)	Tearing effect
	1	1	1	-		-	-	-	-	-	-	TEM		
MADCTL	0	↑	1	-	0	0	1	1	0	1	1	0	(36h)	Memory data access control
	1	↑	1	-	MY	MX	MV	ML	RGB	0	0	0		-
VSCBSADD	0		1	-	0	0	1	1	0	1	1	1	(37h)	Vertical scrolling start address
VSCRSADD	1	1	1	-	VSP15	VSP14	VSP13	VSP12	VSP11	VSP10	VSP9	VSP8		
	1	1	1	-	VSP7	VSP6	VSP5	VSP4	VSP3	VSP2	VSP1	VSP0		
IDMOFF	0	1	1	-	0	0	1	1	1	0	0	0	(38h)	Idle mode off
IDMON	0	1	1	-	0	0	1	1	1	0	0	1	(39h)	Idle mode on
COLMOD	0	1	1	-	0	0	1	1	1	0	1	0	(3Ah)	Interface pixel format

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
	1	1	1	-	0	D6	D5	D4	0	D2	D1	D0		Interface format
	0	1	1	-	0	0	1	1	1	1	0	0	(3Ch)	Memory write continue
RAMWRC	1	1	1	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
	1	1	1	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		Write data
	1	1	1	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
	0	↑	1	-	0	0	1	1	1	1	1	0	(3Eh)	Memory read continue
RAMRDC	1	1	1	-	-	-	-	-	-	-	-	-		Dummy Read
RAIVIRDC	1	1	1	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
	1	1	1	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		
	1	1	1	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
	0	1	1	-	0	1	0	0	0	1	0	0	(44h)	Set tear scanline
TESCAN	1	1	1	-	N15	N14	N13	N12	N11	N10	N9	N8		
	1	1	1	-	N7	N6	N5	N4	N3	N2	N1	NO		
	0	1	1	-	0	1	0	0	0	1	0	1	(45h)	Get scanline
DDTECAN	1	1	1	-	-	-	-		-	-	-	-		Dummy Read
RDTESCAN	1	1	1	-	-	-	-	-	-	-	N9	N8		
	1	1	1	-	N7	N6	N5	N4	N3	N2	N1	NO		
	0	1	1	-	0	1	0	1	0	0	0	1	(51h)	Write display
WRDISBV	1	1	1	-	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0		brightness
DDDIGDV	0	1	1	-	0	1	0	1	0	0	1	0	(52h)	Read display
RDDISBV	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0		
	0	↑	1	-	0	1	0	1	0	0	1	1	(53h)	Write CTRL
WRCTRLD					0	'	Ů	•	· ·	O .	,	'	(3311)	display
	1	1	1	-	0	0	BCTRL	0	DD	BL	0	0		
RDCTRLD	0	1	1	-	0	1	0	1	0	1	0	0	(54h)	Read CTRL value dsiplay
	1	1	1	-		-	-	-	-	-	-	-		Dummy read
	1	1	1	-	0	0	BCTRL	0	DD	BL	0	0		

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
														Write content
														adaptive
	0	1	1	-	0	1	0	1	0	1	0	1	(55h)	brightness
WRCACE														control and Color
														enhancemnet
	1	+	1	-	CECTRL	0	CE1	CE0	0	0	C1	C0		
														Read content
	0	↑	1	_	0	1	0	1	0	1	1	0	(56h)	adaptive
RDCABC	0	-	'	-	0	'	0	'	0	'	'	"	(3011)	brightness
RDCABC														control
	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	0	CECTRL	0	0	0	0	C1	C0		
														Write CABC
WRCABCMB	0	1	1	-	0	1	0	1	1	1	1	0	(5Eh)	minimum
														brightness
	1	1	1	-	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0		
														Read CABC
	0	1	1	-	0	1	0	1	1	1	1	1	(5Fh)	minimum
RDCABCMB														brightness
	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0		
	0	†	1	-	1	1	0	1	1	0	1	0	(Dah)	Read ID1
RDID1	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10		Read parameter
	0	†	1	-	1	1	0	1	1	0	1	1	(DBh)	Read ID2
RDID2	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20		Read parameter
	0	1	1	-	1	1	0	1	1	1	0	0	(DCh)	Read ID3
RDID3	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1		ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30		Read parameter

8 Electrical Characteristics

8-1 AC Characteristics of 3-line serial:

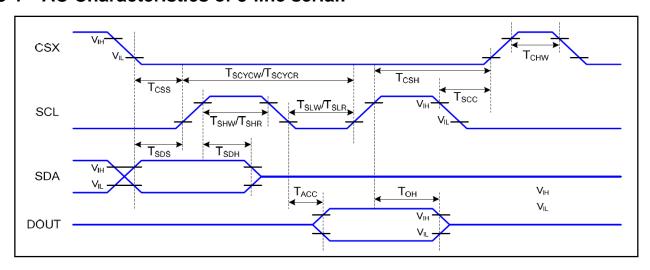
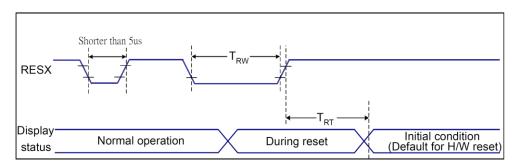


Figure 4 3-line serial Interface Timing Characteristics


VDDI=1.65 to 3.3V, VDD=2.4 to 3.3V, AGND=DGND=0V, Ta=-30 to 70 $^{\circ}\mathrm{C}$

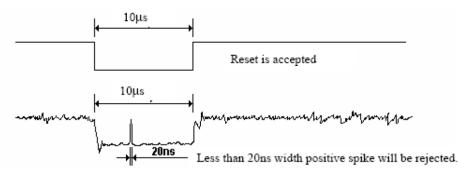
Signal	Symbol	Parameter	Min	Max	Unit	Description
	T _{CSS}	Chip select setup time (write)	15		ns	
	T _{CSH}	Chip select hold time (write)	15		ns	
CSX	T _{CSS}	Chip select setup time (read)	60		ns	
	T _{SCC}	Chip select hold time (read)	65		ns	
	T _{CHW}	Chip select "H" pulse width	40		ns	
	T _{SCYCW}	Serial clock cycle (Write)	66		ns	
	T _{SHW}	SCL "H" pulse width (Write)	15		ns	
SCL	T _{SLW}	SCL "L" pulse width (Write)	15		ns	
SCL	T _{SCYCR}	Serial clock cycle (Read)	150		ns	
	T _{SHR}	SCL "H" pulse width (Read)	60		ns	
	T_{SLR}	SCL "L" pulse width (Read)	60		ns	
SDA	T_{SDS}	Data setup time	10		ns	
(DIN)	T _{SDH}	Data hold time	10		ns	
DOUT	T _{ACC}	Access time	10	50	ns	For maximum CL=30pF
DOUT	Тон	Output disable time	15	50	ns	For minimum CL=8pF

Table 5 3-line serial Interface Characteristics

Note: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

8-1 AC Characteristics of reset

VDDI=1.65 to 3.3V, VDD=2.4 to 3.3V, AGND=DGND=0V, Ta=-30 \sim 70 $^{\circ}$ C


Related Pins	Symbol	Parameter	MIN	MAX	Unit
	TRW	Reset pulse duration	10	-	us
RESX	TRT	Reset cancel	-	5 (Note 1, 5)	ms
	IKI	Reset Califer		120 (Note 1, 6, 7)	ms

Notes:

- 1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.
- 2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 9us	Reset
Between 5us and 9us	Reset starts

- 3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode.) and then return to Default condition for Hardware Reset.
- 4. Spike Rejection also applies during a valid reset pulse as shown below:

- 5. When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- 7. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

9 RELIABILITY

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=72 hrs	
Low Temperature Operation	-20±3°C , t=72 hrs	
High Temperature Storage	80±3°C , t=72hrs	1,2
Low Temperature Storage	-30±3°C , t=72 hrs	1,2
Temperature /Humidity Storage Test	60°C, Humidity 90%, 72 hrs	1,2
Thermal Shock Test	-20°C ~ 70°C 60 min 60 min. (1 cycle) Total 20 cycle	1,2
Vibration Test (Packing)	Sweep frequency: 10~55~10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2

- Note(1) Condensation of water is not permitted on the module.
- Note(2) The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).
- Note(3) The module shouldn't be tested over one condition, and all the tests are independent.
- Note(4) All reliability tests should be done without the protective film.

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

10 USE PRECAUTIONS

10-1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

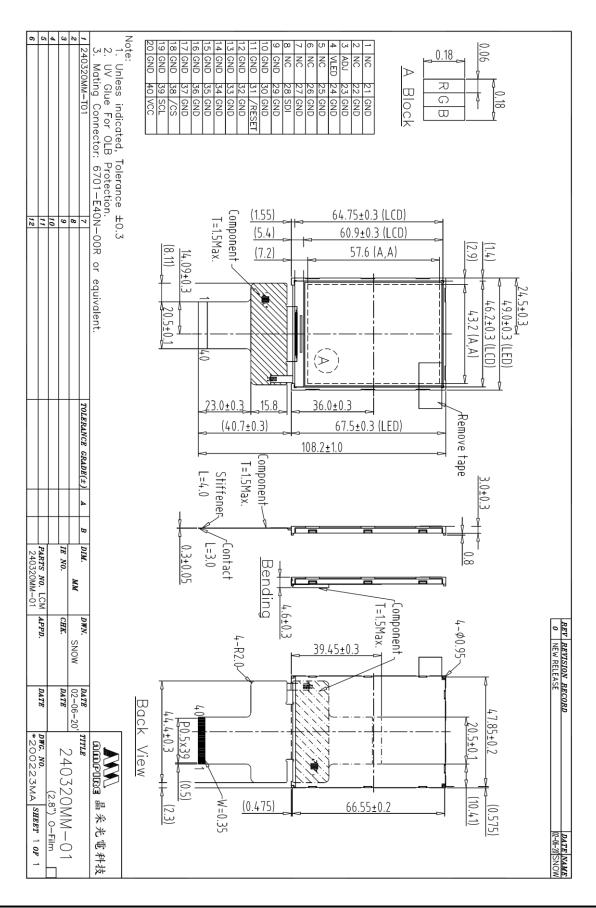
10-2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

10-3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

10-4 Operating precautions


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.

8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

10-5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.
- 3) AMIPRE will provide one years warrantee for all products and three months warrantee for all repairing products.

11 MECHANICAL DRAWING

